

國家災害防救科技中心 整體業務介紹

柯孝勳 國家災害防救科技中心

國家災害防救科技中心之沿革

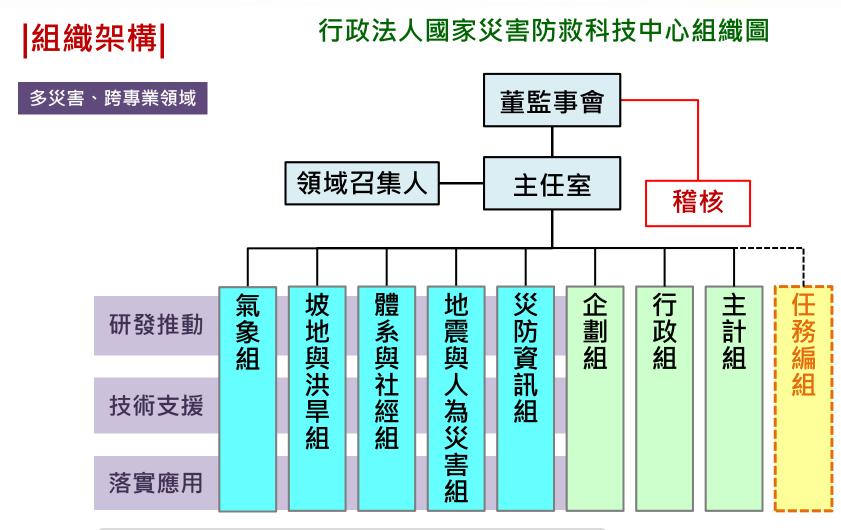
|成立背景|

國家災害防救科技中心之前身為

國科會「防災國家型科技計畫辦公室」

行政院 強化災害防救 災害防救 行政院 國科會(三期,共十五年) 防災國家型 科研落實 災害防救 應用科技方案 大型防災研究計畫 科技計畫(二期) 運作方案 應用科技方案 第二期 100年-103年 104年~107年 71年-85年 86年 -95年 96年-99年 103年 1月 科技部改制 103年5月6日 掛牌 行政法人「國家災害防救科技中心」 ▶92年 7月 依據6th全國科技會議建議及災害防救法, 正式成立「國家災害防救科技中心」 89年 頒布「災害防救法」 86年11月

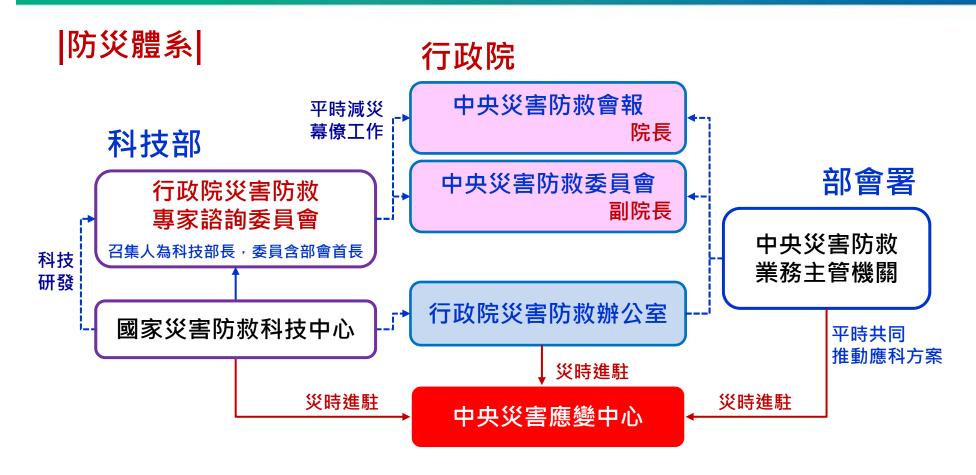
組織定位與任務工作(1)


|任務工作|

研發推動。技術支援。落實應用

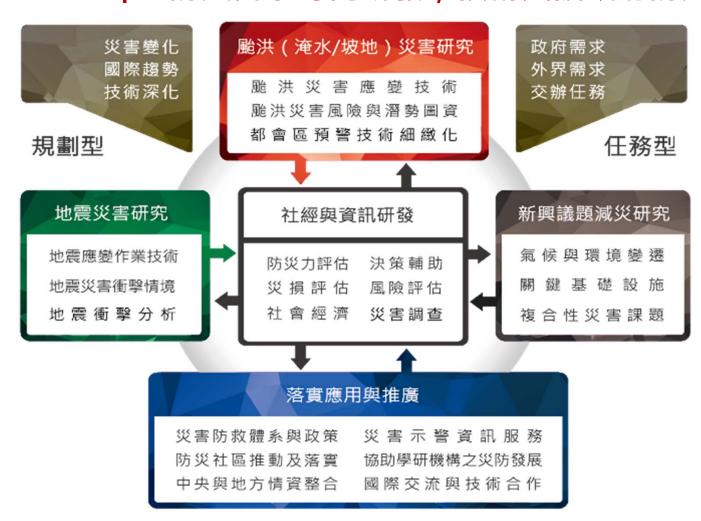
- 1. 推動及執行災害防救科技之研發、整合事宜
- 2. 運用災害防救相關技術,協助災害防救工作
- 3. 推動災害防救科技研發成果之落實及應用
- 4. 促進災害防救科技之國際合作及交流
- 5. 協助大專院校、研究機構參與災害防救科技之研究發展及其應用
- 6. 其他與災害防救科技相關之業務

組織定位與任務工作(2)



- ※ (1) 103年4月28日董事會成立
 - (2) 研發推動、技術支援、落實應用等,皆採跨組、跨專業方式進行

組織定位與任務工作(3)


擔任行政院**中央災害防救委員會**及**中央災害防救會報**幕僚,提供行政院有關**災害防救工作** 之相關諮詢,加速災害防救科技研發及落實,強化災害防救政策及措施

(災害防救法第七條)

組織定位與任務工作(4)

|研發領域架構| 防災需求導向研發;技術支援政府防災業務

整體研發領域架構及規劃(中、長期)

組織定位與任務工作(5)

- 依行政院中央災害應變中心作業規定辦理
- 中央災害應變中心組織架構:依實務運作 為參謀、訊息、作業及行政等四個群組及 前進指揮所,下轄二十個功能分組

中央災害應變中心
指揮官、協同指揮官、副指揮官

前進指揮所

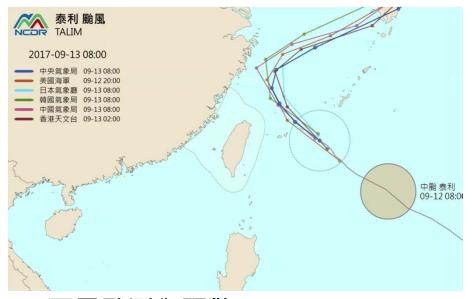
國家災害防救科技中心召集

內政部消防署

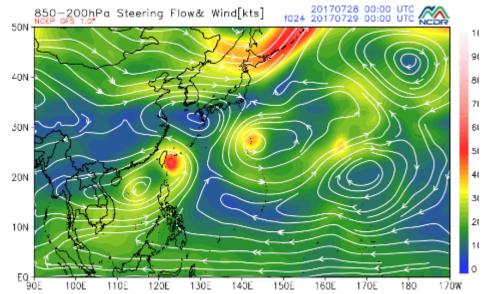
情資研判組

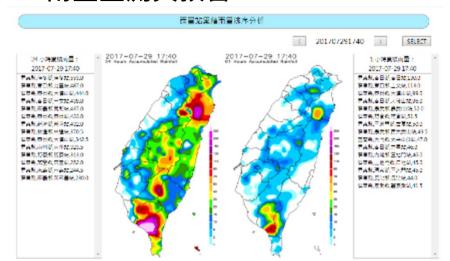
行政院災害防救辦公室指導

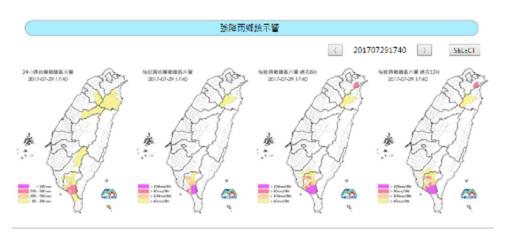
內政部營建署 行政院農委會 (水保局 林務局) 原住民委員會


交通部中央氣象局 經濟部水利署 交通部公路總局

行政院新聞傳播處協助

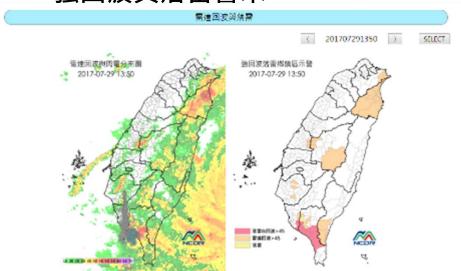

颱風與洪水預警(I)


■ 彙整各國官方發布之路徑



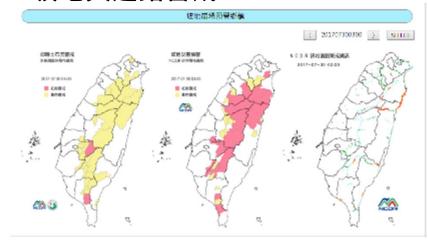
■ 駛流場分析與預報

■ 雨量監測與預警

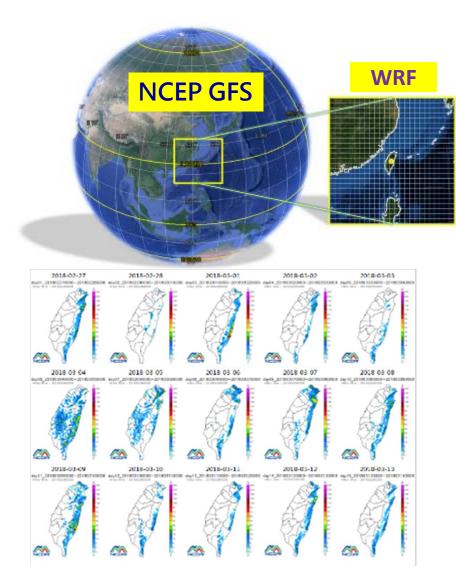


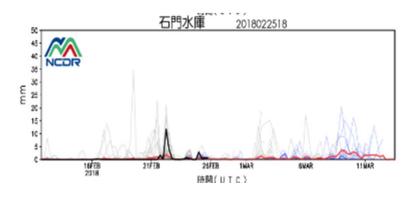
颱風與洪水預警(II)

■ 強回波與落雷警示


■ 淹水警戒

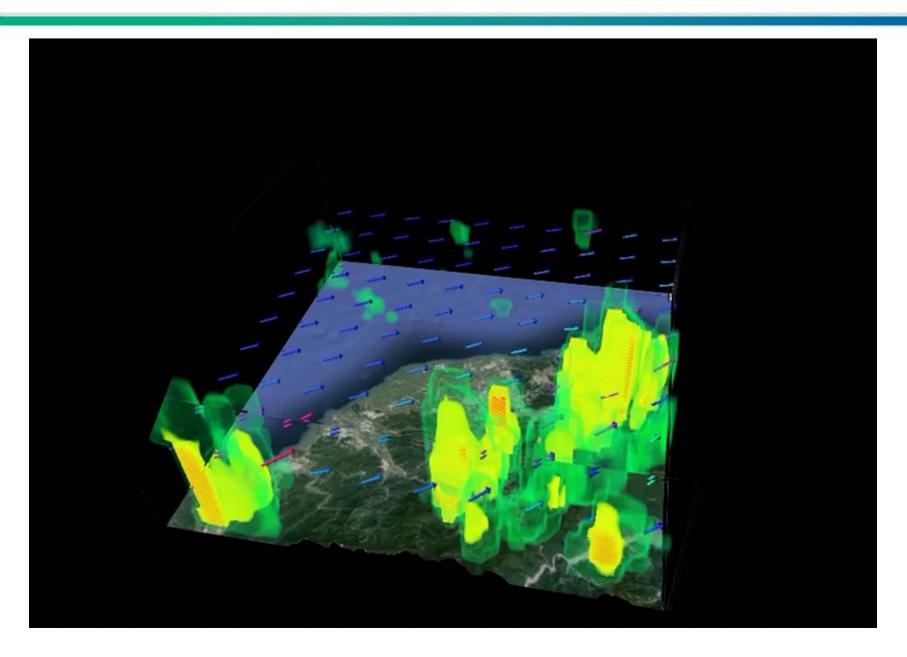
■ 強風與警示


■ 坡地與道路警戒



颱風與洪水預警(III) 水庫枯旱預警

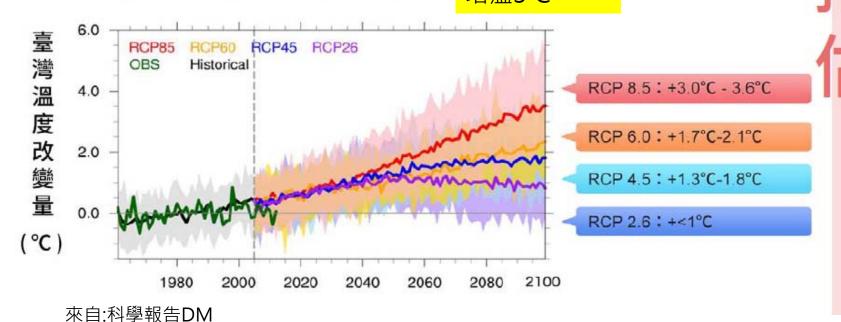
■利用動力降尺度技術延長高解析度雨量預報,計算水庫入庫量


每日進行四次15天雨量預報

推估15天入庫流量

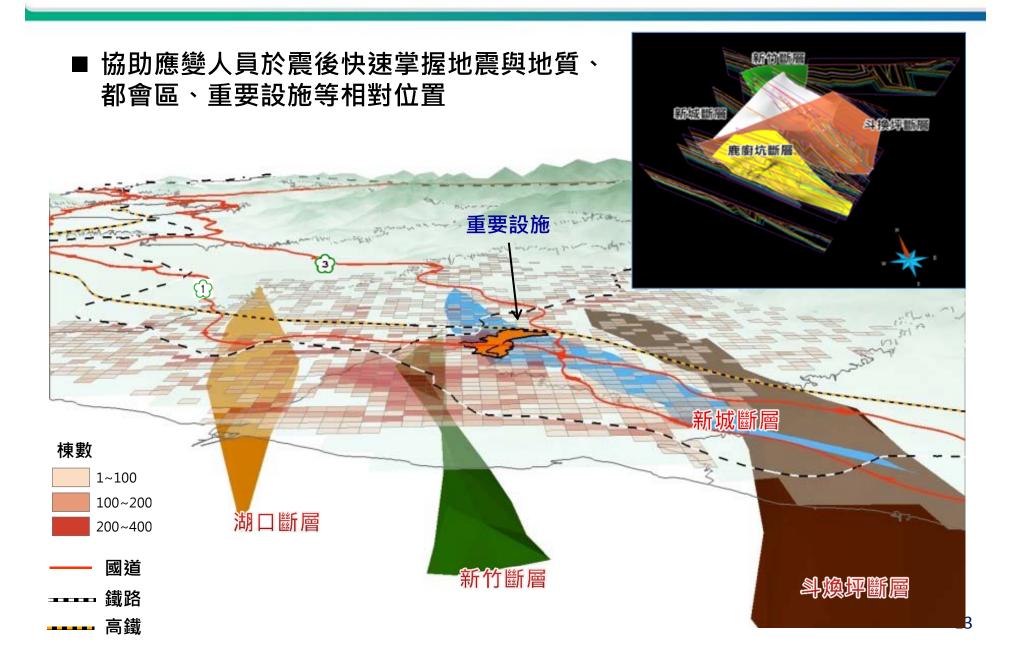
颱風與洪水預警(IV) 雷達3D呈現

颱風與洪水預警(V) 氣候變遷研究

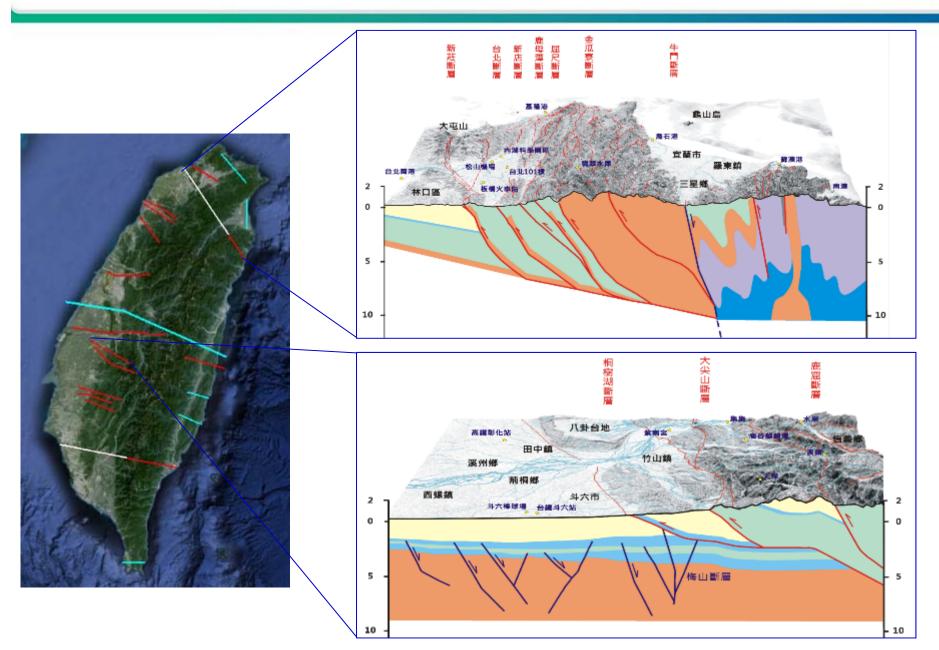

氣候變遷不同情境未來推估情形

臺灣未來將持續暖化,北區增溫較明顯

臺灣氣溫未來推估


臺灣未來溫度的變化,以基期(1986-2005年)的平均溫度為基準:

• 在中度排放情境(RCP 4.5)下,21世紀末紀末年本本子


地震防災技術(I) 建立活動斷層三維數值模型


地震防災技術(II) 三維地質剖面圖資與動態圖檔

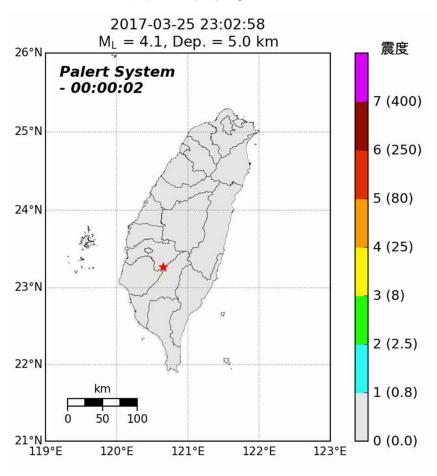
地震防災技術(III) 地震應變情資彙整與提供

本報告係中央氣象局地震觀測網即時地震資料

地爾達報 之結果。

地質剖面: 陳文山教授

地震防災技術(III) 地震應變情資彙整與提供



■ 每次地震事件由系統自動擷取地震資料,產製PGA分佈圖(靜態與動態)

最大加速度值分布

2017-03-25 23:02:58 $M_L = 4.1$, Dep. = 5.0 km 震度 26°N 7 (400) 25°N 6(250)5 (80) 24°N 4 (25) 23°N 3 (8) 2 (2.5) 22°N km 1(0.8)50 100 21°N └─ 0(0.0)121°E 123°E 120°E 122°E

地動歷時分布

(資料來源: Palert 系統)

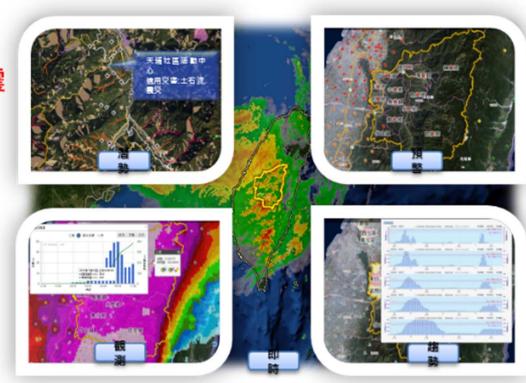
網格人口分布評估結果 模擬嚴度分布—PGA 大台北地區會內人口分布根疑(國家群設) AMERICAN DESIGNATION OF THE PERSON OF THE PE mans 频频范测业标准 快转花混业场边 力量等值 教育保証10公開 88C1 胡李純蓝花珠: 板橋區建物損壞比率 供水管線不服務水準評估係無順正 4.3 以限別發後國籍務如:從吸供水系统與數評位。 動外兩 ルル 見 III 人 正 口 Iエ 車物損壞導致人員傷亡う 臺北盆地土壤液化分布圖 北台灣供電袋物 末編發網級環分析計算 土壤資化關係分額 商先費能報告(PL=0) 報用:由化(0+PL+ 5) 中原排作(5(PL<15) 網網用作(PL>15) 貼 加較於鄉 效能

地震防災技術(IV) 網格化地震衝擊評估技術

項目		計算單元	內容說明
一、地震動分析			
(一)地動模擬		500m 網格	最大地表加速度、速度與位移模擬
(二)土壤液化&引致沈陷		500m 網格	液化潛勢(PL值)與引致最大可能地表沈陷量
(三)崩塌潛勢分析		500m 網格	震後坡地崩塌潛勢
二、衝擊分析			
(一)建物衝擊分析	1.一般建物衝擊分析	500m 網格	一般建物毀損棟數(易損性分析)
	2.老舊建物衝擊分析	500m 網格	老舊建物毀損棟數(易損性分析)
(二)建物引致人員傷亡分析		500m 網格	建物引致人員傷亡數(居家、上午通勤、上班、下午通勤不同時段)
(三)交通衝擊分析	1.道路通阻分析	500m 網格	平面道路阻斷機率分析(易損性分析)
	2.橋梁衝擊分析	點位、線段	橋梁(含高架道路橋)毀損機率分析(易損性分析)
	3.隧道衝擊分析	線段	隧道阻斷機率分析 (易損性分析)
(四)供電衝擊分析	1.電力設施衝擊分析	點位	電廠、電塔毀損機率分析(易損性分析)
	2.末端管線衝擊分析	500m 網格	供電中斷程度分析 (易損性分析)
(五)供水衝擊分析	1.供水設施衝擊分析	點位	取水口、淨水場、加壓站毀損機率分析 (易損性分析)
	2.供水管網衝擊分析	500m 網格	供水中斷程度分析(易損性分析)

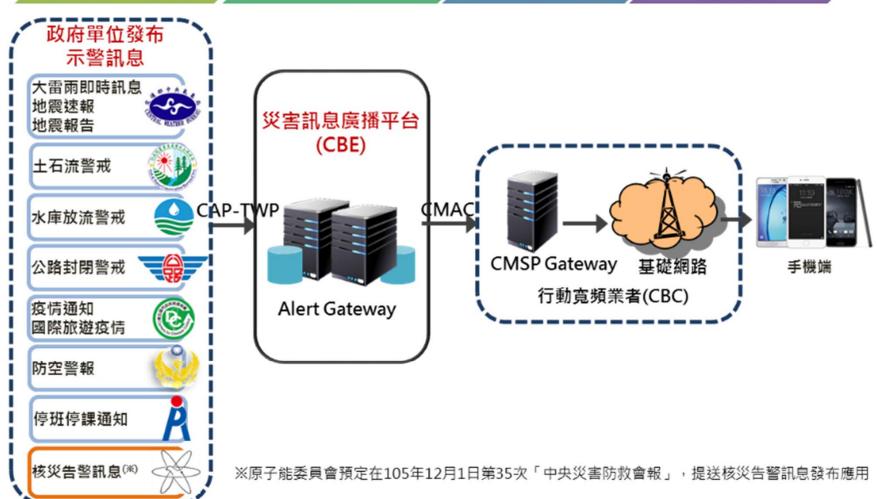
防災資訊整合(I) 災害情資網

災害情資網之情資研判與災害訊息



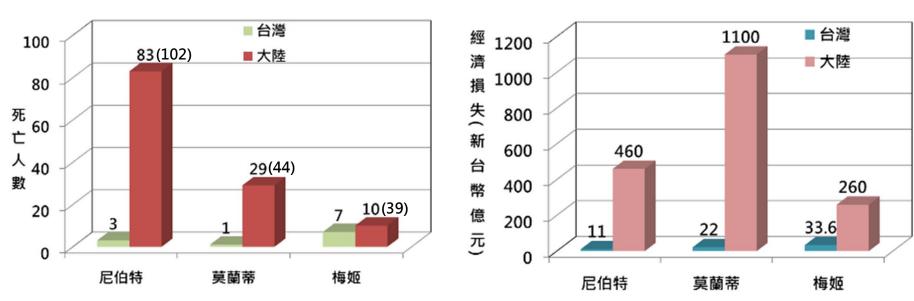
防災資訊整合(I) 災害情資網

因應使用情境需求具有平時整備、災害應變、災害演練、寒害情資與地方版災害情資網主題式地圖資訊


- 平時整備
 - 每日災害資訊
 - 災害潛勢地圖
 - 現地影像觀看
- 災害應變_颱風及地震
 - 情資分析參考
 - 預先災害整備
 - 綜覽災害情勢
- 災害演練
 - 防災自主檢查
 - 熟悉保全對象
 - 疏散規劃
- 寒害情資
- 地方版災害情資網

防災資訊整合(II) 災害訊息廣播平台

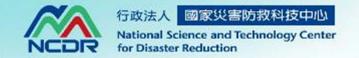
政府防災警訊 > 訊息統整與派送 > 訊息傳送管道 > 應用端


尼伯特、莫蘭蒂、梅姬颱風災情比較

- ■颱風靠近大陸時・強度均有減弱
- ■死亡人數與經濟損失均較大陸少許多

死亡(含失蹤)人數

經濟損失(新台幣億元)


資料來源:

臺灣:EMIC應變管理資訊雲端服務-災害情報站 portal.emic.gov.tw/

大陸: (梅姬)中華人民共和國民政部 http://www.mca.gov.cn/article/yw/jzjz/zqkb/zqhz/201609/20160900001943.shtml (莫蘭蒂)中華人民共和國民政部 http://www.mca.gov.cn/article/yw/jzjz/zqkb/zqhz/201609/20160900001943.shtml

(尼伯特)中國新聞網 http://www.chinanews.com/gn/2016/07-17/7942280.shtml

中國新聞網 http://www.chinanews.com/gn/2016/07-15/7939740.shtml

簡報完畢敬請指教